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Abstract

Hand shadow puppetry is an ancient form of entertainment that uses complex
hand interactions to create shapes and figures that resemble animals, birds and
other objects. But what if you see the puppeteer create a shadow of a rabbit and
you wish to learn the hand pose that brought about this shadow. To this end, we
propose a learning-based approach for 3D interacting hand reconstruction from
a single shadow puppet image. Prior works in hand pose estimation are centered
around estimating 3D hand pose from RGB images. In this project, we make
the first attempt to reconstruct 3D hands from monocular shadow images. For a
given input shadow image, our method generates 3D hand meshes with precise
3D pose. To achieve this, we employ a two-stage framework. In the first stage,
we use a deep network to generate coarse pose predictions. This is followed by
the second stage of iterative pose optimization to refine the predicted pose such
that its rendered shadow exactly matches the one in the input. We investigate
the importance of the second stage of optimization and compare results in the
absence of this stage. Extensive qualitative results demonstrate the effectiveness
of our approach. The code, data and trained models are available at https:
//github.com/Tandon-A/Hand-Puppets.

1 Introduction

Reconstructing two interacting hands in 3D is an active research area, as it enables applications in
various fields of vision and graphics, including augmented and virtual reality, robotics, and sign
language translation. Prior works focus on hand pose estimation from RGB images and/or depth
sensors or multi-camera setups. However, these methods cannot be easily applied to shadow images.

An intuitive solution to learn hand pose parameters from shadow images is to use a deep network to
extract possible features and supervise using constraints on the pose parameters to avoid unnatural
poses.

In this work, we employ a two-stage framework for interacting hand pose predictions. In the first
stage, we use a CNN (Pose Prediction Network) to generate coarse predictions of the pose parameters.
Specifically, the CNN takes a shadow image as input and regresses the pose parameters of the two
hands. These initial predictions provide a good initialization for the second stage. Some results of the
predicted mesh generated from only the Pose Prediction Network are shown in the third column in
Fig 1. You can see that the resulting mesh is able to capture the coarse structure of the ground truth
mesh, however there is still some misalignment in the predicted shadow of the reconstructed mesh.

Hence in the second stage, we employ conventional gradient-descent based optimization (Iterative
Pose Optimization) that refines the first-stage predicted pose output in several steps. The second
column in Fig 1 shows several reconstructed 3D hand meshes using our two stage framework. We
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Figure 1: Interacting Hand Pose Estimation from Shadow Images: 1) The first column is the
ground-truth shadow image and hand mesh. 2) The second column shows the hand mesh and its
corresponding predicted shadow obtained from our two-stage pipeline. 3) To depict the importance
of the iterative pose optimization stage, the third column shows hand mesh predicted only from the
Pose Prediction Network.

can see that using the iterative pose optimization predicts hand poses whose shadow image closely
matches the input shadow image.

Our contributions are as follows: 1) We propose a novel two-stage framework for 3D interacting
hand pose estimation from shadow images. 2) Our pipeline does not need any additional inputs like
depth maps or heat maps.

2 Prior Work

We briefly cover related prior works in 3D hand reconstruction from images.

2.1 3D Single Hand Pose Estimation

Existing literature for 3D single hand pose estimation approaches mainly use RGB images.
Regression-based approaches [14, 13] take depth images as input and directly map the image to the
hand joint locations. Detection-based methods [7, 13] estimate a probability density map for every
joint. Recent monocular RGB image based techniques [5, 12, 3] primarily use a CNN to predict the
MANO [11] model parameters.

2.2 3D Interacting Hand Pose Estimation

Reconstructing two hands is challenging due to severe self-occlusions. Some approaches address this
problem using multi-view setups, depth maps or marker gloves. Kyoung Mu Lee et. al.[8] proposes
InterNet that implements interacting and single hand pose estimation from a single RGB image. The
network predicts the handedness (existence of left and right hand), 2.5D right and left hand poses and
right hand-relative left hand depth. The final 3D interacting hand poses are refined using 2.5D poses
and relative depth between the hands. Yu Rong et. al.[6] reconstruct 3D interacting hand poses from a
monocular RGB image by optimizing the initial pose and penalizing collisions using penetration loss.
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Figure 2: Pose Prediction Network: Overview of our first stage in the two-stage framework. Given
only a shadow image as input, the Pose prediction network computes a coarse pose estimate. This
stage adopts a convolutional neural network encoder (ResNet-18) to regress the hand pose parameters.

2.3 Hand Pose Estimation from Interacting Hand Shadow Images

Our problem statement does not fit into the domain of the approaches discussed above since we wish
to estimate 3D interacting hand pose from just shadow images which are not as feature rich as their
RGB counterparts. Thus we do not have a clear separation between the two hands making this a more
difficult task.

3 Proposed Method

3.1 Hand Mesh Representation

The MANO[11] model is a low-dimensional parametric hand mesh model that captures hand shape
and pose variations. The hand surface is represented by a 3D mesh with vertices V where the number
of vertices is Nv = 778 and the vertices are mapped to joints J where NJ = 16 is the number of
joints. The 3D position of the ith vertex and the jth joint is denoted by vi, Jj ∈ (β, θ) ∈ R3 where
β ∈ RNs is a shape parameter vector and θ ∈ RNp is the pose parameter vector. Here Ns = 10 and
Np = 51.

The MANO model defines a function

v, J : RNs × RNp −→ RNv×3 × RNJ×3 (1)

that computes the 3D position of all the Nv vertices and NJ joints.

Since we are only concerned about the hand pose and not the shape, we regress only the θ values. We
use independent hand models for the left and right hand and concatenate the parameters for each of
them to get θ = (θleft, θright).
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Figure 3: Iterative Pose Optimization: Given an initial prediction from our Pose Prediction Network,
the optimization pipeline tries to modify the pose parameters in such a way that the rendered shadow
of the predicted mesh is as close as possible to the input shadow image along with other regularization
terms.

3.2 Pose Prediction Network

Architecture: The Pose Prediction Network takes a shadow image S as input and extracts image
features F using ResNet-18[2] and outputs the estimated pose parameters θ. The network and training
details are depicted in Fig. 2. Below, we mention the significance of each of the loss functions used
in the training phase of the network.

Geometric Losses: In addition to imposing supervision on the predicted pose parameters θ, we also
constrain the predicted 3D joints. Specifically, we obtain the ground-truth 3D joint locations Ĵ3D and
the predicted 3D joint locations J3D by using the ground-truth and predicted pose parameters θ̂ and θ
respectively as input to the MANO Model.

Lpose = ||θ − θ̂||22 (2)

LJ3D = ||J3D − Ĵ3D||22 (3)

Rendering Loss We also use a pixelwise rendering loss between the predicted shadow image S and
input shadow image Ŝ.

Lren = ||S − Ŝ||22 (4)

Loss Functions The entire pipeline is fully differentiable with respect to the learnable parameters, thus
making the Pose Prediction Network end-to-end trainable. The overall loss function is summarized as

L = λposeLpose + λJ3DLJ3D + λrenLren (5)

where λpose, λJ3D and λren are tunable hyper-parameters to adjust the trade-off among different
types of supervision on the network.
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Figure 4: Results of our two-stage
framework: In each of the grid cells,
the top image is the rendered shadow and
bottom image depicts the hand mesh.

Figure 5: Failure cases of our two-
stage framework: In each of the grid
the top image is predicted shadow while
at the bottom we have the hand mesh.

3.3 Iterative Pose Optimization

In the Pose Prediction Network, we tried to regress the mesh parameters θmesh from just an input
shadow image which makes it difficult for the network to predict accurate pose parameters for
challenging poses with interacting fingers.
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Hence we implement an test time optimization framework wherein we refine the estimated pose in
an iterative algorithm. At each refinement step we impose constraints on the pose parameters and
the rendered shadow of the predicted mesh such that this shadow is as close as possible to the input
shadow. Specifically, we use the rendering loss as defined in equation 4. Additionally we use an
Area loss which compares the number of pixels occupied by the hands in the predicted shadow Np

and input shadow Ni. This loss enables the optimization to better deal with local minima. We also
constrain each of the 51 predicted parameters θi to be in specific range θimin, θimax where i goes
from 0 to 51. These θimin and θimax values are obtained from the dataset.

Larea = |Np −Ni| (6)

Lpc =

51∑
n=1

max(0, θi − θimax) + max(0, θimin − θi) (7)

We use gradient-descent optimization which updates the parameters by minimizing the following
objective.

L = λrenLren + λareaLarea + λpcLpc (8)

4 Experiments

To evaluate the effectiveness of our approach, we present the qualitative results on the recovered mesh
from a single shadow image input. We also perform ablation studies where we compare the results of
the 3 baselines - first using just the Iterative Pose Optimization pipeline (with random pose initial-
ization), second using just the Pose Prediction Network and finally combining the Pose Prediction
Network with the Iterative Pose Optimization to show the results of our two-stage framework.

4.1 Experimental Settings

4.1.1 Dataset

The InterHand2.6M dataset[8] contains large-scale multi-view single and interacting hand sequences
under various poses. We use the MANO[11] annotations and generate shadow images corresponding
to the interacting hand poses in the dataset by using the Silhoutte Renderer from Pytorch3D[10] from
a fixed viewing direction. We generated such shadow images for 10000 hand poses with complex
interactions and used these mapping of shadow image and pose parameters for the supervised learning
of our pose prediction network.

4.1.2 Training

We implement our framework with Pytorch [9]. The hyper-parameters in equation 5 are empirically
set to λren = 0.01, λpose = 1 and λJ3D = 1. Adam Optimizer[4] is used to optimize the framework.
We begin with a learning rate of 1e-4 and decay the learning rate whenever validation loss plateaus
for more than five epochs.

4.2 Results

Visualizations on a few samples from the Interhand2.6M dataset are shown in Fig 4.

4.3 Failure Cases

Fig 5 shows some of the failure cases of our framework. As seen from these results, it is evident that
images with complex interacting hand poses are difficult to handle. Since our framework needs to
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Figure 6: Pose Prediction Network + Temporally-aware Iterative Pose Optimization: Here for
each frame of a video sequence, the bottom right is the reconstructed mesh. In the top left we show
the input shadow in blue, the predicted shadow rendered from the reconstructed mesh in pink and the
overlap between the two shadows in green. Consequently, higher green coverage indicates higher
overlap between the predicted shadow and the input shadow.

regress pose from just interacting hand shadow image, it is not able to differentiate between the two
hands in the image. This results in unnatural pose predictions wherein the fingers are intersecting
with each other.

4.4 Ablation Study

Baseline 1: Iterative Pose Optimization only: To verify the need of a learning based network to
generate the initial coarse pose predictions, we test an optimization only pipeline where we directly
regress the hand pose through Iterative Pose Optimization starting with a random initialization. From
the results we can see that this generates predicted shadows similar to the input shadow at the expense
of generating unnatural hand poses.

Baseline 2: Pose Prediction Network only: Here we include visualizations of the predicted pose
obtained from just the Pose Prediction Network without doing Iterative Pose Optimization. The
results are shown in Fig. 7. The results show that in simple cases the network is able to correctly
predict the pose. However, in complex interacting hands it generates unnatural hand poses since the
network is not able differentiate between the two hands and hence generates mesh with intersecting
fingers.

Baseline 3: Pose Prediction Network + Iterative Pose Optimization: Here we combine the first
and second stage of the framework and observe the results. We can see that in cases where the
predictions from the Pose Prediction Network are a little misaligned, the Iterative Pose Optimization
stage is able to refine the predicted mesh to get the correct predicted shadow image.

Pose Prediction Network + Temporally-aware Iterative Pose optimization: Instead of testing
the performance on just images, we use a sequence of image frames from a video. In a given video
sequence, for the first frame at t = 0 we get the initial pose estimates from the Pose Prediction
Network. However, for the subsequent frames, we use the second stage of the pipeline, i.e. the
final predicted pose from the optimization pipeline at t = 0 is used as the initial estimate of pose at
t = 1 which is then optimized using the optimization framework. We can see that, this prior in the
optimization pipeline greatly helps with refining procedure and generate smooth transition in the
hand meshes across multiple frames. The results are shown in Fig 6
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5 Future Work

5.1 Regularization Terms

From the failure cases in Fig 5, we see cases where the two hands in the predicted mesh are colliding.
To ameliorate such scenarios we plan to add a penetration loss as used in [1].

5.2 Camera Pose Estimation

Currently the Pose Prediction Network is regressing the MANO[11] pose parameters. Besides these
parameters we can also regress a set of weak-perspective camera parameters π ∈ R3. Given these
camera parameters we can obtain the orthogonal projection of the 3D joints to get the 2D joints and
supervise these. This will enable us to test the performance of our framework on real world images.

5.3 Pose Sequence Optimizer

After modelling the final predicted pose θfinal that forms the correct shadow image upon projection,
we would like to generate the sequence of transformations leading to this final hand pose from a rest
pose. Due to the unavailability of ground-truth values for the intermediate steps, this can be modelled
as a optimization between the initial and the final hand pose over n steps.

6 Conclusion

We have presented a novel pipeline for reconstructing 3D hand mesh from monocular shadow images.
We have employed a two-stage framework, wherein we first predict coarse predictions for the hand
pose parameters which were then refined using the second stage of optimization. We show several
visualizations of experiments on the InterHand2.6M dataset[8].
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