
[Final Report]
RoboNotes: Reinforcement Learning for Music

Composition
Eileen Li [chenyil@], Rutika Moharir [rmoharir@]

Abstract—Reinforcement learning (RL) has proven to be ef-
fective for large variety of tasks, from optimizing ad placement
to teaching AI to play Go. In this work, we apply techniques
in RL to the problem of music composition. Creating inspiring
music is a difficult challenge even for human composers. We
limit our problem space by only considering two octaves of
notes on a single track of composition, for a fixed length. We
experimented with on-policy learning (PPO), off-policy learning
(DQN), and model-based RL (CEM) and compare these methods
with the performance of a random agent. We extend to multi-
track composition (Modification #1) and use expert data with
Behavior Cloning (BC) and GAIL (Modification #2). Our reward
function is hand-crafted from a set of common music theory
rules. Even in this limited setting, we show that the agent can
indeed learn something meaningful and uploaded the finished
compositions to Youtube for general viewing.

I. INTRODUCTION

In this project, we will explore using reinforcement learning
techniques for the purpose of music composition. The code
can be reviewed at https://github.com/eileenforwhat/robonotes.
This report describes our custom RoboNotes environment, the
reward function, results showing the performance of PPO,
DQN, CEM, vs. a random agent, and our two modifications:
1) multi-track composition and 2) BC and GAIL with expert
data. We use MIDI, with is the widely used digital format for
representing music data.

II. TERMINOLOGY

Terminology used in this project:
• ‘note’ and ‘pitch’ are used interchangeably and refers to

a single musical note.
• ‘beat’ is the length of one timestep. This is translated by

the MIDI converter based on its ‘tempo’ setting to an
actual BPM.

• ‘track‘ is the number of parallel notes we allow our
agent to place at every beat. We explore multi-track
composition in Modification #1.

III. ENVIRONMENT

The environment implementation can be reviewed at
robonotes/blob/main/env.py.

A. Action Space

Our action space is defined as:

self.action_space = spaces.Discrete(38)

Fig. 1. Visualization of environment, by SeeMusic.

This definition represents the 36 notes + 2 special actions
the agent can take at each timestep. The 36 notes span two
musical octaves, mapping to MIDI pitches C3 to B5. The 2
special actions are note off (0) and no event (1). note off
releases the previous note and no event produces no change
to the observation (resulting in current notes held for longer
duration). We can only have a single note at each timestep, so
an action of any pitch (2 to 37) would also result in releasing
the previous note. As an example, [3, 0, 4, 1] translates to
[C3, Rest, C#3 for 2 beats].

B. Observation Space

We limit our problem space further by passing in a pa-
rameter max trajectory len, which determines the length
(number of beats) of our composition. This is a parameter of
our environment and determines the size of our observation
space. Each observation consists of the sequence of actions
(notes) that the agent has chosen so far, and we calculate
a reward based on this sequence. The observation space is
represented by:

self.observation_space =
spaces.Box(low=0, high=37,

shape=(max_trajectory_len,))

This gives us a fixed length vector initialized to (0 = note off)
at each environment reset.

https://github.com/eileenforwhat/robonotes
https://github.com/eileenforwhat/robonotes/blob/main/env.py


C. Step

At each step, the agent takes the specified action by placing
one more note in the composition. We keep track of the last
index, and at each step, the state changes by adding the current
action to the index that corresponds to this timestep.
As an example, for (si, a)− > si+1:

n = max_trajectory_len

t=0: (s0=[0, 0, 0, ... a_n], a1) -> s1
t=1: (s1=[a1, 0, 0, ... a_n], a2) -> s2
t=2: (s2=[a1, a2, 0, ... a_n], a3) -> s3
t=3: (s3=[a1, a2, a3, ... a_n], a3) -> s4
...
t=n: (s_n=[...], terminated)

We calculate the reward at each step by considering the se-
quence so far, and add it to the total rewards for that composi-
tion. Terminated is returned only if t = max trajectory len
has been met.

D. Reset

Rewards reset to zero. Observations reset to vector of zeros.

E. Render

Our environment supports “render modes” : [“human”].
While we may want to link this directly with a MIDI visualizer
in the future, it currently calls our MIDI converter to save a
MIDI file. This is called at the end of a trajectory.

F. MIDI Converter

robonotes/blob/main/midi/midi writer.py contains the con-
verter that translates our encoding of discrete actions to MIDI
pitches and saves a MIDI file that can then be played on many
existing tools. We use the SeeMusic App [6] for creating our
videos.

IV. REWARD FUNCTION

Crafting the reward function proved to be one of the major
challenges of this project. Inspired by the work done by Jaques
et al. [9], we based our reward function on music theory rules.
Throughout the course of the semester, we’ve made efforts to
revise and improve the reward function to encourage more
sophisticated compositions. The implementation can be found
at robonotes/blob/main/reward.py

We found that crafting a good reward function heavily
guided the qualitative results of RoboNotes. Quantitative re-
sults were easier to obtain since RL algorithms are designed
to optimized any reasonable reward function. However, this
did not always translate to good qualitative results (subjective
evaluation of how the music actually sounded), and only
through cycles of trials and errors did we gain intuition for
the effects of tweaking reward function parameters on the
agent output. A more difficult failure mode was the problem
of repeating and empty notes, despite penalties for both. It
was only after adding an additional diversity reward that our
agent broke out of this local minima.

Our total reward for the trajectory is a summation of the
reward per step, a combination of five components:

Rtrajectory =

T∑
t=0

Rstept

Rstept
= Rk +Ro +Rr +Re +Rd

• Rk: Reward for being in the same key
• Ro: Penalty for large jumps over an octave
• Rr: Penalty for repeating the same note
• Re: Penalty for having empty (rest) beats
• Rd: Reward for entropy as a measure of note diversity

A. Rk: Key Reward

For simplicity, we set the first note of the sequence as the
key of the composition. We give a reward of 5 if the current
note is in the correct key. If we are at the terminal state, we
give a large reward of 10 for ending the sequence on the tonic
note (key note).

B. Ro: Octave Penalty

Return a penalty of -1 if current note is not within an octave
of the previous note. We want to discourage large jumps.

C. Rr: Repeat Penalty

This penalty is important to discourage agent from selecting
repeating notes. We scale the penalty based on the number of
repeats in a row such that the longer the repeating sequence,
the more severe the penalty: Rr = −k where k is the number
of consecutive repeats from the current note.

D. Re: Empty Penalty

Similarly, we want to discourage the agent from selecting
too many empty (rest) notes in a row. The penalty is scaled by
length of empty notes, k: Re = −2 ∗ k, with a large penalty
of -100 if the first note of sequence is empty.

E. Rd: Diversity Penalty

We want to encourage diversity in the music composition.
We tried several methods such as auto correlation (with lags
1, 2, 3) and entropy, but found that the latter worked better.
The entropy is greatest when the notes are all different and
smallest when they are all the same. We give a reward of 5 if
the calculated entropy is greater than 0.5 * the max possible
entropy for the sequence.

V. METHOD

A. Modification #1: Multi-track Learning

The first modification increases the complexity of our prob-
lem space by expanding single-track composition to multi-
track. This means that at each timestep, our agent is learning
a vector of notes instead of a single note.

We modify our action space to support M notes per
timestep:

self.action_space =
spaces.Box(low=0, high=37, shape=(M,))

https://github.com/eileenforwhat/robonotes/blob/main/midi/midi_writer.py
https://github.com/eileenforwhat/robonotes/blob/main/reward.py


Similarly, we update our observation space:

self.observation_space =
spaces.Box(low=0, high=37,

shape=(max_trajectory_len, M))

We also make modifications to our rewards function to support
multi-track outputs. For fair comparison, we keep the reward
function as similar as possible, returning the average reward
per track for each of the components. We run experiments
using PPO on number of tracks = {2, 3}, but found that any
higher numbers diverged in training, perhaps due to lack of
robustness in the reward function for multi-track.

B. Modification #2: Imitation Learning with Expert Data
For our second modification, we experimented with imi-

tation learning methods such as Behavior Cloning (BC) and
Generative Adversial Imitaion Learning (GAIL) with expert
data. To accomplish this, we downloaded 16K classical MIDI
files from various composers from an online repository [1].
We pre-processed these files to align with the limits of our
problem space (two octaves, single track, constant tempo).
After pre-processing, we have left 10986 unique compositions.
To generate our expert trajectories, we then sampled 20K
sequences of length = max trajectory len and used this
dataset as the expert rollouts for BC and GAIL. Note that
each expert composition can yield many expert trajectories
since the length of composition is often far greater than
the max trajectory len. The pre-processed dataset can be
loaded from robonotes/blob/main/data/midi arrays.npy.

In BC, we simply use these expert trajectories to train a
policy that, given input state outputs a distribution over actions,
and is represented by a two-layer feed forward network. We
evaluate this policy by taking the average reward per trajectory
post-training.

In GAIL [8], we simultaneously train a discriminator (Re-
wardNet) that aims to distinguish expert trajectories against
trajectories from the learned policy and a generator (PPO) that
aims to learn a policy to fool the discriminator. We alternate
between training steps for the discriminator and generator
until convergence, and then use the generator policy to sample
trajectories for evaluation.

TABLE I
Comparing for each experiment: average reward per rollout, time to train
until convergence, and number of steps until convergence. Regrettably, we

did get steps[converge] info for BC and GAIL.

avg reward time[train] steps[converge]
random[b] 49.5 0min NA

DQN 86.35 8min 1.5M
PPO 97.94 2min 200K
CEM 100.9 12s 200K

Multi-PPO 80.87 4min 600K
BC 58.5 5min NA

GAIL 62 7min NA

VI. RESULTS

All the scripts used to run our experiments can be found
at robonotes/blob/main/run scripts/. We compare results from

on-policy (PPO), off-policy (DQN) and model-based (CEM)
RL. We also compare the results from our two modifications:
multi-track (PPO) and imitation learning (BC and GAIL). We
plot the performance of each method versus a random agent
in Figure 2.

A. Quantitative

The plot shows that all our methods outperform the random
agent, with CEM and PPO as the clear winners. The random
agent fluctuates around 20-40 average reward per rollout with-
out any improvement and with high variance. DQN converges
after about 1.5 million timesteps at 86.35 average reward
per rollout. PPO converges faster at about 200K timesteps
at a higher reward of 97.94. While CEM converges at the
same rate as PPO but with a slightly higher reward of 100.9.
For our modification experiments, multi-track PPO (with two
tracks) converges after about 600K timesteps at 80.87. BC and
GAIL are trained with expert trajectories and their subsequent
evaluation returns are plotted. GAIL has an average reward of
62 while BC is lower at 58.5. This is expected since BC is
prone to generalization errors and does not perform well on
unseen data while GAIL is much more robust.

From these results, it seems like CEM and PPO are the
best choices among the 7 experiments. While PPO is learning
directly from the sampled trajectories rather than trying to
learn a Q-function to approximate rewards, CEM tries to
improve the performance by training more on an elite set of
states and actions. PPO has an advantage for our problem
space in particular since sampling trajectories is very cheap.

1) DQN Training Setup: We train DQN with learning rate
= 0.001 and batch size = 32. Learning starts after 100K
timesteps. The train frequency = 4 (how often to update model)
and the target update interval = 10K (how often to update
target network). The number of gradient steps per rollout = 1.

2) PPO Training Setup: We train PPO with learning rate
= 0.003, batch size = 64, gamma = 0.99, gae lambda =
0.95 and normalize advantage = True. We did not perform
an exhaustive hyperparameter search, but experimented with
multiple settings to observe the best training curve.

3) CEM Training Setup: We train CEM with learning rate
= 0.01, discount factor = 0.99, rollouts = 1000. We did
hyperparameter search by modifying the architecture of the
CNN. A simple network, with 2 hidden layers each having 64
units followed by 2 fully connected layers was finally used.

4) Multi-track PPO Training Setup: We train PPO with the
same hyperparameters as single-track PPO above, but instead
using our newly defined ‘RoboNotesMultitrackEnv‘.

5) BC Training Setup: We run BC using 20K sampled
expert trajectories, for a total of 20 epochs and a batch size
of 32. We use Adam optimizer and train until convergence. A
2-layer feed forward network is used to learn a policy network
directly from the expert trajectories.

6) GAIL Training Setup: We run GAIL using 20K sampled
expert trajectories, for a total of 500K timesteps. We alternate
between training the generator (PPO) for 1024 updates and the
discriminator (RewardNet) for 10 updates until both converge.

https://github.com/eileenforwhat/robonotes/blob/main/data/
https://github.com/eileenforwhat/robonotes/blob/main/run_scripts/


Fig. 2. Plotting the average reward per episode for experiments random, PPO, DQN, CEM, BC, GAIL, and multi-track, with smoothing factor = 0.8. CEM
outperforms the bunch with PPO close behind. All groups show significant improvement over the random agent.

There are a lot of hyperparameters for this method and we did
not have time to do an exhaustive search. We used the same
PPO hyperparameters as the experiments above.

B. Qualitative

We uploaded some videos of composition created by our RL
agents to [https://tinyurl.com/52aj3brp]. The trajectory length
(number of beats) for each composition is 20, with a tempo
of 160 BPM.

The random samples are truly random, with notes jump-
ing everywhere with no cohesion. CEM, PPO and DQN by
comparison sound a lot more like music (though by no means
master pieces of work). The compositions have notes in the
same key and even some repeating motifs. Multi-track agent
has more notes per beat, but due to lack of understanding of
harmonies, it does not sound any better than the single-track
options. In our opinion, the imitation learning experiments (BC
and GAIL) sound the best qualitatively, with the least amount
of repeating notes and more consistent composition.

VII. CONCLUSION AND FUTURE WORK

We can use reinforcement learning techniques like PPO,
DQN, and CEM to teach AI how to compose music from very
basic music theory. In addition, we explored multi-track music
generation and imitation methods (BC and GAIL) using expert
trajectories generated from real compositions. Of the different
methods, CEM and PPO are the easiest to train and fastest
to converge to the highest return. Expert data with imitation
techniques (BC and GAIL) greatly helps with the subjective
quality of results, but since these methods are not optimizing
our reward function directly, the quantitative return is not as
good as CEM or PPO.

This points to a major limitation of our project: dependence
on our custom reward function and its misalignment with
qualitative results. While we can craft the reward function to
avoid major failure modes (repeating notes, same key, etc.), it
is much more difficult to teach the agent more nuanced musical
notions (motifs, harmonies, etc.) directly from a rule-based

https://www.youtube.com/playlist?list=PLvm2mApRgA5FNQyPPptZIGeVv5FCQJ0YW


reward function. To make further improvements, we must
introduce some learned notion of musical quality. In GAIL,
we learn a discriminator that is essentially a reward function
(input transitions, output returns). With more time, we would
like to explore using this learned reward for evaluation and
see if it better correlates quantitative and qualitative results.

Another area for improvement is to better utilize our expert
dataset. The pre-processing we current deploy greatly limits
the potential of our raw MIDI dataset, since we are reducing it
to single-track melodies. There is a lot more we can learn from
this dataset if we could expand the scope of our problem space
to incorporate different tempos, beats, note velocities and
dynamics, harmonies, etc. An idea is to use our raw dataset to
learn a feature encoder for representing music composition in
latent space and a decoder to predict MIDI notes and dynamics
(beats, velocities, etc.) from this latent representation. We can
use the extracted features as a more rich observation space on
which to run our RL algorithms.

With recent advances in AI, perceived creativity in music
generation is improving at an alarming rate. While SOTA
methods do not often use reinforcement learning, we had the
opportunity to explore this topic and the efficacy of various
RL techniques. The experience familiarized us with the world
of RL, but more importantly sparked inspiration for future
advancements in this area and beyond.

THIRD PARTY LIBRARIES

We list the third party libraries used in this project:
• Gym [2]: environment API
• Stable-Baselines3 [5]: PPO and DQN experiments
• Skrl [7]: CEM experiments
• Imitation [3]: BC and GAIL experiments
• MIDIUtil and Mido [4]: reading/writing MIDI files
• SeeMusic [6]: visualizing MIDI files

REFERENCES

[1] https://github.com/lucasnfe/adl-piano-midi.
[2] https://www.gymlibrary.dev/.
[3] https://imitation.readthedocs.io/en/latest/.
[4] https://pypi.org/project/MIDIUtil/.
[5] https://github.com/DLR-RM/stable-baselines3/blob/

master/docs/index.rst.
[6] https://www.visualmusicdesign.com/.
[7] https://skrl.readthedocs.io/en/latest/intro/installation.html.
[8] Jonathan Ho and Stefano Ermon. Generative adversarial

imitation learning, 2016. URL https://arxiv.org/abs/1606.
03476.

[9] Natasha Jaques, Shixiang Gu, Richard E. Turner, and
Douglas Eck. Generating music by fine-tuning recurrent
neural networks with reinforcement learning. In Deep
Reinforcement Learning Workshop, NIPS, 2016.

https://github.com/lucasnfe/adl-piano-midi
https://www.gymlibrary.dev/
https://imitation.readthedocs.io/en/latest/
https://pypi.org/project/MIDIUtil/
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://github.com/DLR-RM/stable-baselines3/blob/master/docs/index.rst
https://www.visualmusicdesign.com/
https://skrl.readthedocs.io/en/latest/intro/installation.html
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1606.03476

	Introduction
	Terminology
	Environment
	Action Space
	Observation Space
	Step
	Reset
	Render
	MIDI Converter

	Reward Function
	Rk: Key Reward
	Ro: Octave Penalty
	Rr: Repeat Penalty
	Re: Empty Penalty
	Rd: Diversity Penalty

	Method
	Modification #1: Multi-track Learning
	Modification #2: Imitation Learning with Expert Data

	Results
	Quantitative
	DQN Training Setup
	PPO Training Setup
	CEM Training Setup
	Multi-track PPO Training Setup
	BC Training Setup
	GAIL Training Setup

	Qualitative

	Conclusion and Future Work

